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SUMMARY

In this paper the three dimensional scattering of a plane and a spherical ‘wave by an arbitrary smooth convex
object will be considered.

These problems are solved for large values of frequency by means of ray theory and the theory of boundary
layer expansions.,

1. Introduction.

The problem to be treated is the three-dimensional scattering of a scalar
wave, bya totally reflecting smooth object, at high frequencies. The medium
we consider is homogeneous. In this article we apply the ray method of
J.B.Keller [1-3] to solve this problem. This method based on the ray-
concept is combined with the method of boundary-layer expansions. The
reasoning being essentially physical in nature makes these methods more
advantageous in comparison with other methods. Although exact proofs are
not available, the correctness of this theory is not seriously questioned
and it is believed that it yields asymptotic representations, valid for short
wavelength, of the exact solutions of the Helmholtz equation. The evidence
for this comes from exact solutions, valid for a few simple geometrical
configurations, e.g. the two dimensional circular cylinder and the sphere,
for which short-wave expansions can be found rigorously. V. A.Fock [4]
in his two dimensional treatment of short-wave diffraction by a convex cyl-
inder used the ray method and boundary layer expansions as well.

As mentioned before we are interested in solutions of the Helmholtz equation

AT+ k¥ =0 (1,1)

with (k a) *» 1 where a is a measure for the radius of curvature of the
object. It seems that in our treatment we must have (k a)’*>» 1. The bound-
ary condition on the object is § = 0. The wave function § can be inter-
preted either as the velocity potential of sound waves, corresponding to
an acoustically soft object, or as the Schrddinger wave function in non-
relativistic quantum mechanics [5] in which case it corresponds to a hard-
core potential. There is no difficulty in extending the treatment to a vector
wave field, so as to represent electromagnetic scattering from a perfectly
conducting object in a homogeneous medium.

To apply the ''ray'"’ method we have to define rays first. Rays are intro-
duced by means o£ the substitution

Blx. k) = ox, ke W (1,2)

in which x = (x,y, z).
Inserting (1,2) in (1,1) we obtain the equation

Ap+ ik(279- 7S + pAS) + k2 [14VS)2|e = 0 (1,3)
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If ¢ and S do not have large gradients, then for large values of k the k2
term is the leading one. Hence we put its coefficient equal to zero and we
get

(vs)? = 1 (1,4)

In geometrical optics this equation is the well-known eiconal equation. Its
characteristics are straight lines which are perpendicular to surfaces S =
constant, If we Introduce the arclength ¥ along these characteristics and
choose Z positively in the direction of increasing S, then we get along
these lines

S =8, % (1,5)

where S, is an integration constant. We call these characteristics rays.
In geometrical optics rays are often introduced by means of the Fermat
principle. In general we can easily verify [8] that in ‘a nonhomogeneous
medium the characteristics of the equation '
2

(%)

in which n(x) is the refractive index, (we arrive at this eiconal equation,
if we put in equation (1.1) k?n?(x) instead of k?) are the curves between two
fixed points x; and xg along which the optical path length

(vS)? = n

Cj n(x)ds

is stationary with respect to small variations in the integration path C.
~The case in question deals with a homogeneous medium with n(x) = 1,
sotherays are straightlines. The incoming rays of our problem are spherical
or parallel tothe x-axis with unit amplitude.  If we put the object in this field,
we find two different regions, viz. a lit region and a shadow region.

In the lit region every point is reached by two rays, a direct incoming
ray and a ray reflected by the object. In this way no rays will come into
the shadow region. Hence ‘we are dealing with a solution of (1, 1) which is
discontinuous along the shadow boundary and_the assumption that the gra-
dients are moderate is violated, so the k“ term is not the leading one
anymore. If we still require solutions of the.form (1,2), we must remove
the discontinuity. We therefore define creeping rays.

Creeping rays are rays generated by that part of the incoming rays which
meets the surface tangentially and follows the geodesics of the object in a
direction which is the same as the incoming rays. Each point of these
geodesics’.will generate a ray into free space tangentially to the geodesic
line with-a certain amplitude.

The geometrical considerations yield the solution

~

$ = Tp/inc + Preft * ZE;Cl (1.9)
in the lit region and
qu’ = ad (1, 7)

in the shadow region, where Wine and Pr.;; are the incident and the reflected
ray, respectively. /@d and §, are the diffracted rays in the 1lit and the shad-
ow region, respectively. These diffracted rays are caused by the creeping
rays, We will see that for large values of k the influence of the diffracted
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rays in the lit region far from the shadow boundary is asymptotically small
with respect to the incident and the reflected ray.
In the next section we meet solutions of the form

P(x. k) = Pl kexp {ikSx) - k*W(x)}

with s = = instead of the form (1,2). It can be proved that these solutions
are asymptotic solutions of (1,1) also [6].

2. Devivation of the asympitotic equalions.

We investigate the three dimensional diffraction of waves in a homoge-
neous medium by a smooth convex object. Two cases are considered,
namely a plane and a spherical incident wave. Although the object is the
same we must introduce a different coordinate system in both cases. We
only discuss the field caused by the creeping rays in the shadow region.
In section 1 ywe defined creeping rays as geodesics starting on the shadow
boundary in the direction of the incident rays. We call these lines u® =
constant. The arclength along these rays is defined by ul and the shadow
boundary is u! = h(u?). The coordinate lines on the surface, u! =constant,
are perpendicular to the geodesics. The surface is determined by the vector

i = i@ i=1,2,3
X x(u%) @ =12 (2,1)
and the linear element on the surface
2 2
ds? = du! + g du? (2,2)
with
oxk ax!
8ij =6 ————, 81 =1, g1g =0 and g4y = g
du! au’
where
5 21 if k =1
kl 0 if kK $#1

The diffracted rays are tangentially to the geodesics and therefore we
introduce the new coordinates u*,u“ and u® as follows

. . axi(ut, u?)
zi(ul,u?,u?) = xi(ul,u?) + (ud-ul) —— (2,3)
du’
s 3 1
with i = 1,2,3 and u” -u” =290
where z! are the Cartesian coordinates of a point in space. In the ul
coordinates we derive the ILaplace operator A which has the form

A =gl o -ﬁ<fL (2,4)
sutond Y aut ’

G" is the contravariant matric tensor and I ¥ the Christoffel symbol of
the second kind. Y
First we derive the covariant metric tensor



144 A.J.Hermans

9z az!
=6 _
Y K aut aul
we find
,  9%x! 9%l
G,, = (u® —ul) 6 ..
11 ;
Uoaut? gy’
92x1 923
Gy = (u® - u})’s (2,5)
12 ij B )
Y oaul® sulau?
og o a%x1 9%y
3 1 3 1
G22=g+(u-u)——~+(u-u)6ij T
du du~9u” du adu
Gig= Ggy=10
Gyz = 1

From (2;2) follows that the unit vector n; normal to the surface has the
form

9 %1 1
= n; (2, 6)

2
oul p(u 1,u2)

with p(ul,uz) as the radius of curvature of the geodesic u? = constant.
The determinant G of the metric tensor is
2
(ud-ul) g
G =—— g+ (uPul)— +
pz aul

s |l 92t 92x! 9%x! a%xi \’
+ (u”-u’) (—56.. - | 6y >

02 7 sulou? sulou? gul” gulou?

and with help of (2,2) we find

2

(ud-ul)? dgt
G = — gt + (ud-ul) - (2,7
o) ou
We introduce.
92xi  p2x]
R =6 _
2
Y ul” aulou?
And find
. L s
1 og?* 2
G11 S gé + (us_ul) + (uS-ul) szz
G dul
12 Log 1.2
G = -—(u"-u’) R
¢ (2, 8)
1 (u¥-u?)
¥ - —
G p2
G13 = G23 =0

o]
w
[4¥]

i

—
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In section 1 we noticed, the wave function is of the form
g = ex {ikS +u3}
¢, = ¢, exp{ik(S )
with S, being constant.

Introducing this substitution here, we obtain the following form of the
Helmholtz equation

[ 8% 3p 3¢ @
G Ad‘_Fik d Vy ki 2 “'+_._“_‘+ (2,9)
ouloul ! suk ous ud -
Bg%
aul d
+ =
i
gé + (u3_ul) agz
gul

On the object the condition ¢, = 0 must be satisfied, at infinity we recquire
the radiation condition and on the shadow boundary, at finite distance from
the object

~

(Qd e Pine

An asymptotic solution of (2,9) can be found by equating the term with
the highest power of k to zero. This leads to an asymptotic solution of
the form

R 1,2

)

Yg = =)
1 dg (2,10)
(ud-ul)igz + (u3-ul)

su!

The function F(ul,u?) is an integration constant of the asymptotic equation.
Solution (2,10) is singular on the object where u? = u! and on the caustic
surface :

L
. og *

gl - (us'ul) — =0
aul

In the case of diffraction by a spherce this caustic is reduced to the axis
of symmetry [7]. With our method it is, in principle, possible to give
asymptotic solutions near the caustic as well. In this article we consider
solutions valid at finite distance from the caustic if any.

We now apply the method of boundary-laver expansions to find a solution,
valid near the object. We therefore stretch the coordinates near the obhject
and the shadow boundary. The shadow bhoundary on the object is the given
line u! = h{u?. We introduce the new coordinates

K7 {u;j—h(uz)}
K {u?-h(u®)}

Putting this in equation (2,9) and cquating the cocfficient of the highest
power of k to zero we get a differcential equation for the asvmptoric solution

it

[ed

i3

pT o 1 9, Moy gy ,
— + 24 b — . g (2
a3 83 -3 93 D o =3

1)
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where we take for p the value of the radius of curvature on the shadow bound-
ary on the surface p = p{h(u )s u
Introducing the coordinates

22
3

p =27 p7(a - p)°
q = 2 I3} 3 o
and the new function %
X =g exp(i® p)
We arrive at the equation for X

92X aX
—+i—+pX =0 (2,12)
op? 3q

with boundary condition X = 0 if p = 0.

The solution of this equation depends on § ;.. We therefore consider dif-
ferent forms of the incident wave.

3. The incident wave is plane.
Dealing with a plane incident wave we obtain a solution (2,12) of the form

Wo(t)

X==Afem{Wﬂhm- \Mﬁm4& (3,1)
C

W, (1)
where W, (t) and W,(t) are Airy functions

2 T L (1] 3
Wl(t) = ¢e" \/;(-t)i H%) {%—(-t)z}

(1)
H: is a Hankel function of the first kind and order. The function W,(t)

is*the complex conjugate function of Wy(t). We have

W (t) = u(t) + iv(t)

uf{t) - iv(t)

W, (t)

=i
The contour C runs from o e° over 0 to co. This contour can be closed
at infinity in the half plane where the imaginary part of t is positive. The

integral along this closing intlegral is equal to zero. The zeros of Wl(t)
are points on the line t = p e for real positive p.

To find the constant A we use the condition on the shadow boundary,
which states that at finite distance from the object the-asymptotic solution

tends to @ - ]
Therefore we continue (3,1) in that region with the help of (2, 10) and

obtain the solution

’ .\  3 . 3 B
N Aexpl-3pf +ik(So+ru®)} o Wyt
Py ~= =jc \'\’2(t~p)—

{g%»f- (u?-ut) ag} ©
out)
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Referring to Eisenhart [9] we know that the principal radius of curvature
of the wave fronts of the incoming wave which are tangenhally to the object
on the shadow boundary

gt {h(uz), u2}

g1
aul

Py

In this case we are dealing with, a plane incident wave, hinee p, = oothis
ag z
leads to —g—1= 0 on the shadow boundary
For large values of p we get
; 3
~ 4 Vr exp{lk(SOJru )}
Bpe A

. L
1 g4

We determine S, in such a way that

~

Ve ° exp{ik(So+u 3)} .

This can always be done.
Hence we have

i
g
4\/7r

and the asymptotic solution near the shadow boundary is

A=

~

i g4 e*{p{lk(S +u® ) izp%
1< L
2 z

CHR
z + 3o
4V {g {ud-ul aul
' (3,2)
” Wy (1)
x.‘ W (t-p) - W (t-p)y dt
C W, {t)
where

Writing (3,2) as a sum of. residues we find

. 3 .
Vr g7 explik(So+tu®)-if p2te . Wit -p)
5) it
) 5T L e s 3
T e 5 T
g: + (ud-ul aulf ' AR

bearing in mind that Wl(ts) =0
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At finite distance from the object we .expand the Airy function for large
values of p and we get

A

o)

-1
) 6 Vr Pé{h(uz),uz} g%exp{ik(so+u3)+ _75_1_}
X

[(uS—ul){gé+(u3—u1) ai}}

@4
dul

5 (!xp{its<}2<) P‘%{h(uz),ﬁ} [ul_h(u“z)]}

X =0 {W11(t5)}2

This solution is valid near the shadow boundary. Assuming that at finite
distance from this shadow the exponential behaviour of the solution is

(3,3)

i

ut

' L
exps ik(S,tud) + its<%>35h( 8 p-3(ul,u)dulys
i«

we are able to derive a solution in that region. Introducing the variable
2 1 R
y = p73 kI (u¥-ul)
and the solution of the form
1 Ul
o, = = exp{iik(So+u3)+ 1t(§>5

p-3(ut,udu’ty (u',u2, ¥) (3, 4)
5=0 11(112) )

Again we assume that each ¥; can be expanded as an asymptotic series
of the form, v

I

(3t

o, =k T K3y

n=0 ns

If we put this in equation (2,9) and equate the coefficient of the highest
power of k to zero we get the ordinary differential equation for ¢

1 5% o 1 2it it, ot i

__0s 4 08 -——— - T+ 2iY+ @ — -2 +— L =0
b B : L 3 b = 08 3 o
y*< oy* oY Y Y* . g} ' Y

with the solution

Lo, = exp {1(tg-%y*‘)} Wi(t,-p) Hu',u",s)

where p = 2737
The asymptotic solution we found has the form

1

r By 7O 2 7 . 1.3
P4 ~ k'l exp{ik(so-'ru )+1t:<%>‘ 5 p’?(u],u )(iu]'*l(t<7'~§7" )p X
= ) () S

X Wy (t-p) H(u',u=,s)
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We continue this solution at finite distance from the object and match it

with (3,3). This matching leads to H(ul,u?, s) and r,. After some cal-
culations we find at finite distance from the object:

1 .
(12() ‘Va P3(u 1,u2)g%

P, = %]é exp{ik(S,tu®)+ %}
(u3-ut) ghe(ud-ut) ==
au 1[
1
i u
exp{its(l;—) ’ j p‘%(ul,uz)dul}
oo D
\230 L o (3’ 6)
) {Wll(tS)}u
and near the object
1 3 3 .
- Vr gl exp{ik(So+u )-i%pz} o €I W, (t,-p)
ba = 3 3 1, 9p%|t 2=:0 1 2 (3,7)
g? +Hu’-u) i} ® {W1 (ts)}
aul

with

2

i s 2
p73 (u?-ul)

ul

= )
2 W(u?)

All these solutions are singular in the points

o}
i
TN
N
N
w

win

(ul,u?)ydut + p-F(ud-ul)

1
1 . Bgz
P 3_..1 -
g (u"-u™) ————aul 0

Hence all the derived solutions are valid apart from these singularities,
which we call caustic points and therefore the assumption that the gradients
of § are moderate is violated and therefore the term with the highest
power of k is not the leading one any more. It is possible to construct
an asymptotic solution near the caustic with the help of our method. In
this article we consider only points at finite distance from these caustics.

We are now able to give the complete solution in the.shadow region at
finite distance from the caustics. We must sum up all ray contributions
in a point. This is a geometrical problem which is not solved here,

4. The incident wave is sphevical.

Remembering that the geometry which we consider depends on the incident
wave it is obvious though the objcct is the same as the one of section 3
the coordinate system which we introduce here is a different one. However
we use the same notation.

We now take as a solution of (2,9) the form:

/ v(t)
X = A j‘ ¢ W (tep M (L ep) s ———— W (t-p)pdt
¢ W (5
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where p,,q, are the p,q coordinates of the source. The shadow boundary
on the object is called ul = h(uz). And as we mentioned in section 3 the
radius of curvature of the wave fronts of the incoming waves on the shadow
boundary is

ol

g
1
og*
aul

Py = (4, 1)

And in this case pj; is the distance from a point on the shadow boundary
’lh(uz), u?; to the source. We take the origin of u® in the source, hence
5. = 0. Along the diffracted ray the arclength is u? - u'. We can derive
the function u! = h(u?) eliminating u' from

ol

g

og
ou

(S

fary

As a solution in the shadow region, near the shadow boundary, we have

) . 3_.2 3 2 )
Ak exp{lku 13(p2+p02)j .

¢, ~
(Pd % _;‘
=7+ (ud-ul)
og

ou!

. v(t)
1 ~to) ;
X };‘ e ATy L (t —po){v(t -p) -

W (t)

W, (t-p) pdt (4,2)

This solution should be equal to Ginc on the shadow boundary at finite distance
from the object. Hence we expand (4,2) for large values of p, and p and
find

-1 exp(iku3 +IL

~ ! 2 2] [k 4
Ga = 2AVTK? pa{h(u ), u }<7> —_— -
u
- exp(iku®)
= Qi = N ‘
uO

from which follows

P 2 1
—— p73 {h(uz),U“} S

Considering the case that the source is at finite distance from the object
and the obscrvation point near the object, we expand the solution for large
values of p,. Because the observation point may be at finite distance from
the shadow boundary we use the variables of (3,7) and get the solution

exp(iku ¢ -i%p%)

~ ) { v(t)
v =~ L L 1 e qv(t-p)-
B (£ o] ). xE

W, (t-p)} dt (+, .,

2| gt | 5g*
pul \ pul
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with

2
3 2
p = <%>3 F3 (ub-ul)
vt
q = (_g_)g j p-3(ul, u2)dul + p-3F(ud-ul)
b(u?)

This solution can be expressed as a sum of residues in the region where
this sum is rapidly convergent, we get

3
-Ti exp {ikus-igp"-} ° i Wi(ts-p)
~ e T s e 4
$, — L Loe Wit 2 (4, 4)
Terl8: | (y3_yl) 1
dgif 9g1
dut\pul

bearing in mind that W,(t) = 0
A solution at finite distance from the object will be gained by expanding
W,(t, -p) for large values of p.

L , ;
N (—122) ¢ \/—n p3(u 1, uz)exp{ikuS—%l}
Py = X

i 1
£ (wPul)y /BL + (ud-ul)
yot 3
oul aul

4,5
. (4,5)

T exp i’cs(-lzs-)3 5 p-3(ul, u?du?l
b(u?)

[ e}

Again the final solution is a superposition of all ray contributions in the
point of observation.
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