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SUMMARY 

In this paper the three dimensional scattering of a plane and a spherical wave by an arbitrary smooth convex 
object will be considered. 

These problems are solved for large values of frequency by means of ray theory and the theory of boundary 
layer expansions. 

1. Introduction. 

The problem to be treated is the three-dimensional scattering of a scalar 
wave, bya totally reflecting smooth object, at high frequencies. The medium 
we consider is homogeneous. In this article we apply the ray method of 
J.B. Keller [i-3] to solve this problem. This method based on the ray- 
concept is combined with the method of boundary-layer expansions. The 
reasoning being essentially physical in nature makes these methods more 
advantageous in comparison with other methods. Although exact proofs are 
not available, the correctness of this theory is not seriously questioned 
and it is believed that it yields asymptotic representations, valid for short 
wavelength, of the exact solutions of the Helmholtz equation. The evidence 
for this comes from exact solutions, valid for a few simple geometrical 
configurations, e.g. the two dimensional circular cylinder and the sphere, 
for which short-wave expansions can be found rigorously. V.A. Fock [4] 
in his two dimensional treatment of short-wave diffraction by a convex cyl- 
inder used the ray method and boundary layer expansions as well. 

As mentioned before we are interested in solutions of the Helmholtz equation 

A ~  + k 2 ~  = 0 ( 1 , 1 )  

with (k a) >> 1 where a is a measure for the radius of curvature of the 
object. It seems that in our treatment we must have (k a)I/~>> i. The bound- 
ary condition on the object is ~" = 0. The wave function ~ can be inter- 
preted either as the velocity potential of sound waves, corresponding to 
an acoustically soft object, or as the Schrhdinger wave function in non- 
relativistic quantum mechanics [5] in which case it corresponds to a hard- 
core potential. There is no difficulty in extending the treatment to a vector 
wave field, so as to represent electromagnetic scattering from a perfectly 
conducting object in a homogeneous medium. 

To apply the "ray" method we have to define rays first. Rays are intro- 
duced by means of the substitution 

~ ( x ,  k)  = ~o(x, k ) e  iks(x) (1 ,  2) 

i n  w h i c h  x = ( x , y , z ) .  
I n s e r t i n g  (1 ,  2) i n  (1 ,  1)" w e  o b t a i n  t h e  e q u a t i o n  

ik(2vv.vs + v s) + k2[1-(vs)2J  = 0 (I,3) 
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If  ~0 and S do not have  l a r g e  g r a d i e n t s ,  then  fo r  l a r g e  v a l u e s  of k the k 2 
t e r m  is the  l e ad ing  one.  H e n c e  we put i t s  c o e f f i c i e n t  equa l  to z e r o  and we 
ge t  

(VS) 2 = 1. (1 ,4 )  

In g e o m e t r i c a l  o p t i c s  th i s  equa t ion  is the  w e l l - k n o w n  e i c o n a l  equa t ion .  I t s  
c h a r a c t e r i s t i c s  a r e  s t r a i g h t  l i nes  which  a r e  p e r p e n d i c u l a r  to s u r f a c e s  S = 
c o n s t a n t .  I f  we i n t r o d u c e  the a r c l e n g t h  ~ a long  t h e s e  c h a r a c t e r i s t i c s  and 
c h o o s e  ~ p o s i t i v e l y  in the  d i r e c t i o n  of i n c r e a s i n g  S, then  we get  a l o n g  
�9 ~hese lines 

s = So +~ (1,5) 

where S O is an integration constant. We call these characteristics rays. 
In geometrical optics rays are often introduced by means of the Fermat 

principle. In general we can easily verify [8] that in a nonhomogeneous 
medium the characteristics of the equation 

(vS) 2 = n2(_x) 

in which n(x) is the refractive index, (we arrive at this eieonal equation, 
if we put in equation (i. i) k2n2(x) instead of k 2) are the curves between two 
fixed points Xl and x2 along which the optical path length 

n(X)ds 

c 

is stationary with respect to small variations in the integration path C. 
The case in question deals with a homogeneous medium with n(x) = i, 

so the rays are straight lines. The incoming rays of our problem are spherical 
or parallel to the x-axis with unit amplitude. If we put the object in this field, 
we find two different regions, viz. a lit region and a shadow region. 

In the lit region every point is reached by two rays, a direct incoming 
ray and a ray reflected by the object. In this way no rays will come into 
the shadow region. Hence we are dealing with a solution of (i, I) which is 
discontinuous along the shadow boundary and the assumption that the gra- 
dients ate moderate is violated, so the k 2 term is not the leading one 
anymore. If we still require solutions of the form (1,2), we must remove 
the discontinuity. We therefore define creeping rays. 

Creeping rays are rays generated by that part of the incoming rays which 
meets the surfaee tangentially and follows the geodesics of the object in a 
direction which is the same as the incoming rays. Each point of these 
geodesicSi~will generate a ray into free space tangentially to the geodesic 
line withl a certain amplitude. 

The geometrical considerations yield the solution 

~o =%1o +~ref~ + ~od (1 ,6 )  

in the  lit r e g i o n  and 

= qo d (1, 7) 

in the shadow region, where ~inc and ~refl are tlae incident and the reflected 
ray, respectively. ~d and~d are the diffracted rays in the lit and the shad- 
ow region, respectively. These diffracted rays are caused by the creeping 
rays~ We will see that for large val~es of k the influence of the diffracted 



Diffraction of a Wave at High Frequencies by an Arbitrary Smooth Convex Object 143 

rays in the lit region far from the shadow boundary is asymptotically small 
with respect to the incident and the reflected ray. 

In the next section we meet solutions of the form 

~ ( x ,  k)  = ~ ( x . k ) e x p  { i k S ( x )  - k ' ~ ( x ) }  

�9 1 . f w i t h  s = - i n s t e a d  o t h e  f o r m  ( 1 , 2 ) .  I t  c a n  b e  p r o v e d  t h a t  t h e s e  s o l u t i o n s  
i t  , ~ 

a r e  a s y m p t o t i c  s o l u h o n s  of  (1 ,  1) a l s o  [ 6 ] .  

2. Derivation of the asymptotic equations. 

We investigate the three dimensional diffraction of waves in a homoge- 
neous medium by a smooth convex object. Two cases are considered, 
namely a plane and a spherical incident wave. Although the object is the 
same we must introduce a different coordinate system in both cases. We 
only discuss the field caused by the creeping rays in the shadow region. 
In section l.,,we defined creeping rays as geodesics starting on the shadow 
boundary ii{ the direction of the incident rays. We call these lines u z = 
constant. The arclength along these rays is defined by u I and the shadow 
boundary is u I = h(u2). The coordinate lines on the surface, u I =constant, 
are perpendicular to the geodesics. The surface is determined by the vector 

Xi = x i ( u  a) i = 1, 2, 3 
-- 1,2 (2,1) 

and the linear element on the surface 

2 
ds 2 = du I + g du 22 (2,2) 

w i t h  

g i j  = 6kl 

axk  ax  1 

a u i  au  J 
, gn = I, g12 = 0 and g22 = g 

w h e r e  

1 i f k  = 1  
5 kl = 0 i f  k # 1 

T h e  d i f f r a c t e d  r a y s  a r e  t a n g e n t i a l l y  to t he  g e o d e s i c s  a n d  t h e r e f o r e  w e  
i n t r o d u c e  t h e  n e w  c o o r d i n a t e s  u ~ , u  ~ a n d  u ~ a s  f o l l o w s  

ax i (u  1, u ~) 
z i ( u l ,  u2 ,  u 3) = x i ( u l ,  u 2) + ( u 3 - u  1) ( 2 , 3 )  

au  1 

w i t h  i = 1 , 2 , 3  a n d  u 3 - u 1 _m 0 
where z i are the Cartesian coordinates of a point in space. In the u i 
coordinates we derive the Laplace operator A which has the form 

a -- G ;i r.~ a �9 �9 . - -  ( 2 , 4 )  au~au 3 ~3 au k 

G ij i s  t h e  c o n t r a v a r i a n t  m a t r i c  % e n s o r  a n d  I "k. t h e  C h r i s t o f f e l  s y m b o l  of  
the second kind. ~J 

First we derive the covariant metric tensor 
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Dz k 8z I 

G.. = 6 lj kl aU i 8U j 
we f ind  

D2X i a2xJ 
G n = (u s - ul)26ij 

~u 12 ~u 12 

~2 X i O2xJ 
G12 (u 3 - ul)26 ij ~u12 = ( 2 , 5 )  8ulSu 2 

G22 = g + (U 3-u I) -- 
82X i J ag 2 82x 

+ (ua-u 1) 6.. 
8ui lj 8ulOu2 8ulSu2 

GI3 = G 23 = 0 
G33 = 1 

From (2, 2) follows that the unit vector n i normal to the surface has the 
form 

2xi 1 
- n i ( 2 ,  6) aU 12 p ( u l u  2 ) 

w i t h  O(Ul, U 2) a s  the  r a d i u s  of  c u r v a t u r e  of  the  g e o d e s i c  u 2 = c o n s t a n t .  
T h e  d e t e r m i n a n t  G of  the  m e t r i c  t e n s o r  is 

I 82xi ~2xJ .~2 1 

6ij O~U12 ~USU2/ j 

(2,7) 

G - g + (u3-u I) + 

p2 

( u 3 - u l )  411~_ 82x i  82x j 
+ 6] 

[p2 ~UI~u 2 ~UI~u 2 

and with help of (2, 2) we find 

(U3__ul)2 { ~g�89 J 
G = g�89 + (u3-u I) -- 

p2 8u I 

We introduce 

82X i 82X j 

R = 6ij 8U12 8U 18U2 

And find 

1 i. og 3 I)202R2 G II =-- g~ + ~u3-u -- + (u -u 

G )0u I 

1 
G12 _ ( u 3 _ u l ) 2 R  

G 
i (u a -u i) 2 

G 22 = 
G p2 

G 13 = G 23 = 0 

G 33 = 1 

(2, 8) 
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In s e c t i o n  1 w e  n o t i c e d ,  t h e  w a v e  f u n c t i o n  is of  t h e  f o r m  

with S o being constant. 
Introducing this substitution her(,, we obtain th{, folh)wing form of the 

H e l m h o l t z  e q u a t i o n  

G tj I a 2qo d 
~U i ~U J 

Ou 1 ~d 

+ 

8U k / [}u s U L{ -u i 

= 0 
g~ + ( u 3 - u  1) ag  ~ 

8u ] 

On t h e  o b j e c t  t h e  c o n d i t i o n q o  a : 0 m u s t  be  s a t i s f i e d ,  a t  i n f i n i t y  we r e q u i r e  
t h e  r a d i a t i o n  c o n d i t i o n  a n d  on t h e  s h a d o w  b o u n d a r y ,  a t  f i n i t e  d i s t a n c e  f r o m  
the  o b j e c t  

~ d  ~ m c  

An  a s y m p t o t i c  s o l u t i o n  of  ( 2 , 9 )  c a n  be  f o u n d  b y  e q u a t i n g  t h e  t e r m  wi th  
t h e  h i g h e s t  p o w e r  of  k to  z e r o .  T h i s  ] e a d s  to  a n  a s y m p t o t i c  s o l u t i o n  of  
t h e  f o r m  

F(G 1, U 2 ) 

~~ = 1 
(U3-U I) g�89 + (U3-U I) OU]j j 

T h e  f u n c t i o n  F ( u  ] , u  2) i s  a n  i n t e g r a t i o n  c o n s t a n t  of  t h e  a s y m p t o t i c  e q u a t i o n .  
Solution (2,10)is singular on the object where u 3 u 1 : a n d  on t h e  e a u s h c  
s u r f a c e  

) 

g {  + ( u 3 - u  1) ag2 
= 0 

8u 1 

In t h e  c a s e  of  d i f f r a c t i o n  b y  a s p h e r e  t h i s  c a u s t i c  i s  r e d u c ' e d  to t he  a x i s  
of  s y m m e t r y  [ 7 ] .  W i t h  o u r  m e t h o d  it i s ,  in p r i n c i p l e ,  p o s s i b l e  to  g iv( ,  
a s y m p t o t i c  s o l u t i o n s  n e a r  t h e  c a u s t . i c  a s  w e l l .  In t h i s  a r t i c l e  we c o n s i d e r  
s o l u t i o n s  v a l i d  a t  f i n i t e  d i s t a n c e  f r o m  t h e  cau ,~ t i c  i t  any .  

We now a p p l y  the  m e t h o d  of  b o u n d a r y - l a y e r  e x p a n s i o n s  to  f ind  a s o l u t i o n ,  
v a l i d  n e a r  t h e  o b j e c t .  We t h e r e f o r e  s t r e t c h  t h e  c o o r d i n a t e s  n e a r  t h e  o b j ( , e t  
a n d  t h e  s h a d o w  b o u n d a r y .  T h e  s h a d o w  b o u n d a r y  on the  o b j e c t  i s  the  ~iven 
l i n e  u I = h (u~) .  W e  i n t r o d u c e  t h e  ne~, c o o r d i n a t ~ , s  

c~ : k7 u :3 -h (u  2 

k 4 i{ : ' {u]-h(u~)} 

P u t t i n g  t h i s  in e q u a t i o n  (2, 9) a n d  ( , q u a t i n ~  t h e  c o ( , f f i c i e n t  of' t.}-m h igh< , s t  
p o w e r  of  k to  z e r o  we g e t  a d i f f e r ( , n t i a l  e~ tua t ion  f o r  t he  a s y m p t o d ( :  .~olut iot ,  

" . 2 i  - -  + - - - -  : 0 (2,  11) 
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w h e r e  we t a k e  f o r  p the  v a l u e  o f  the  r a d i u s  of  c u r v a t u r e  on the  s h a d o w  b o u n d -  
a r y  on t h e  s u r f a c e  p : p { h ( u 2 ) ,  u 2}.  

I n t r o d u c i n g  t h e  c o o r d i n a t e s  

2 4 2 
p = 2 -~ p - ~ ( a  - ~3) 

2 1 -~  
q = 2 " - ~ p  

a n d  the new f u n c t i o n  

2 3 
-- ~o d e x p ( i  ~ p~)  

We a r r i v e  a t  t h e  e q u a t i o n  f o r  

@ 2X a l  
- - + t - - + p %  = 0 
8p 2 aq 

(2,12) 

w i t h  b o u n d a r y  c o n d i t i o n  % = 0 i f  p = 0. 
T h e  s o l u t i o n  of  t h i s  e q u a t i o n  d e p e n d s  on  ~ i n c .  W e  t h e r e f o r e  c o n s i d e r  d i f -  

f e r e n t  f o r m s  of  t h e  i n c i d e n t  w a v e .  

3. The i~lcident wave is platte. 

D e a l i n g  w i t h  a p l a n e  i n c i d e n t  w a v e  w e  o b t a i n  a s o l u t i o n  (2,  12) o f  t h e  f o r m  

= A -  e itq W 2 ( t  - p )  W l ( t )  

w h e r e  W l ( t  ) a n d  W2( t  ) a r e  A i r y  f u n c t i o n s  

Wl(t ) = e' ( - t )  �89 tt~ ( - 0  7 
7 

H~ i s  a I t a n k e l  f u n c t i o n  of  the  f i r s t  k i n d  a n d  o r d e r .  T h e  f u n c t i o n  W2 (t ) 
i s ~ t h e  c o m p l e x  c o n j u g a t e  f u n c t i o n  of  W l ( t  ). W e  h a v e  

w g t )  = u(t) + i v ( t )  

W2(t  ) = u( t )  - i v ( t )  

T h e  c o n t o u r  C r u n s  f r o m  oo e 3 o v e r  0 to  oo. T h i s  c o n t o u r  c a n  be c l o s e d  
a t  i n f i n i t y  in  t h e  h a l f  p l a n e  w h e r e  t h e  i m a g i n a r y  p a r t  of  t i s  p o s i t i v e .  T h e  
i n t e g r a l  a l o n g  t h i s  c l o s i n g  i n t e g r a l  i s  e q u a l  to  z e r o .  T h e  z e r o s  of  W l ( t )  

�9 ~i 
are points on the line t = p e :~ for real positive p. 

To find the constant A we use the condition on the shado~/boundary, 
which states that at finite distance from the object the :asymptotic solution 

t e n d s  to  qo inc. 
T h e r e f o r e  we  c o n t i n u e  (3,  ! )  in  t h a t  r e g i o n  w i t h  t h e  h e l p  of  ( 2 , 1 0 ) a n d  

o b t a i n  t h e  s o l u t i o n  

A e •  + ik(S o+u8)} r itq[ , \\-2(t) \Vl(t_p)] dt 
g-~+ (u:S_u b c L w~(t)  J 

8u ].J 
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R e f e r r i n g  to  E i s e n h a r t  [ 9 ]  we  know tha t  the  p r i n c . i p a l  r a d i u s  of  c u r v a t u r e  
of  t he  w a v e  f r o n t s  of  t he  i n c o m i n g  ~ a v e  widish a r e  t a n g e n t i a l l y  to the  o b j e c t  
on the  s h a d o w  b o u n d a r y  

g�89 2} 

Pi = 89�89 

8u ] 

In this case we are dealing with, a plane incident wave, I~.-nr O I = oothis 
0g~ 

leads to = 0 on the shadow boundary 
8u I 

For large va]ues of p we get 

exp{ k/ o+U l} 
tnc ' ~  A • 

i g 4  

We d e t e r m i n e  S o in s u c h  a w a y  t h a t  

= exp{ik(So+ u 3)}. 
Jnc 

This can always be done. 
Hence we have 

i 
A=--g 

and  the a s y m p t o t i c  s o l u t i o n  n e a r  the  s h a d o w  b o u n d a r y  is 

i g�88 exp{ik(S~ X 
r-~ l 1 

~Od ~ 4Vr~r g�89 + ( u S - u 1 )  O--~-J 

X e itq W2(t  -p) W 1 (t -p)  dt 
c W 1 (t) 

w h e r e  

(3,2) 

W r i t i n g  ( 3 , 2 )  a s  a s u m  of r e s i d u e s  we f ind  

~0 d ~-~ 

@r ~ { So+u ~ .2 p3} g~ exp ik( )-I~ ~ e ih~ 

{g~ + (u~-u j 
8g{]�89 

5=0 

8ul~ 

~"] ( t - p )  

)} .  W J ( t ] 

b e a r i n g  in m i n d  tlu~t W l ( t s )  = 0 
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At finite distance from the object we .expand the Airy function for large 
values of p and we .get 

• 

(u3-ul) g~+(u~-u ) au lJ] (3, 3) 

k ] - 1 ,h (u  2) 3 2 2 } [u 
L 

X s=0 

T h i s  s o l u t i o n  i s  v a l i d  n e a r  the  s h a d o w  b o u n d a r y .  A s s u m i n g  t h a t  a t  f i n i t e  
d i s t a n c e  f r o m  t h i s  s h a d o w  the  e x p o n e n t i a l  b e h a v i o u r  of  t he  s o l u t i o n  i s  

e x p  i k (So+u  a) + i t s k 2 ]  13(,,2) P - ~ ( u l ' u 2 " ) d u l  ~ 

we are able to derive a solutlon in that region. Introducing the variable 

1 

T = P -$ k~ (u3-ul) 

and the solution of the forhl 

I IL 1 ] 

= ~ ~ik(So+u3)+it k 5 ~ t , 
kOd s=O h(u '2) 

A g a i n  we a s s u m e  t h a t  e a c h  JJs c a n  be  e x p a n d e d  a s  an  a s y m p t o t i c  s e r i e s  
of  the  f o r m :  

H 

~ = k ~I ~ k-~ 
l l=0  llS 

I f  we  pu t  t h i s  in e q u a t i o n  (2,  9) a n d  e q u a t e  t he  c o e f f i c i e n t  of  the  h i g h e s t  
p o w e r  of  k to  z e r o  we  g e t  t he  o r d i n a r y  d i f f e r e n t i a ]  e q u a t i o n  f o r  g'os 

i 0~r 8,0 I 2 it it s t~ ~ i 
o~ + os s + 2 i  + Cos - -  %,2 + = 0 

T2 ~T2 ~% ; T3 %,2 ~ [ ,}3 .} 

w i t h  l h e  s o l u t i o n  

~!os = e x p  i ( t s ' ~ -  ~"~) W l ( t s - p )  H ( u t ,  u = , s )  

w h e r e  p = 2 - ~ T  
T h e  a s y m p t o t i c  s o l u t i o n  w e  f o u n d  h a s  d~e  f o r m  

. , :3 . k 5 u 2 1 _ . . . .  3 X 
%0 d ~k rx ~ exp Ik(SoTu )+it s p-~(tl u )du *i(ts7:3; 

s=O ~(u 2) 

W l ( t  -p) H ( u [ , u  •  
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We con t inue  this  so lu t ion  at f in i te  d i s t a n c e  f r o m  the  ob jec t  and m a t c h  it 
with (3 ,3 ) .  Th i s  m a t c h i n g  l e ads  to H(u l ,  u2, s) and r F A f t e r  s o m e  c a l -  
cu l a t ions  we f ind at f in i te  d i s t a n c e  f r o m  the  object :  

(u a -u  1) g�89 1) 

u I 

} �9 k ] z exp it s ~- P -g (u l ,  u2)du 1 
u 2) 

and n e a r  the  ob jec t  

1 3 3 
X/-Tr g~-exp{ik(So+U ) - i 2 p J  

{ g�89 +(ua_u 1) ag�89 ~ s=O 
au U 

exp{ik(So+ u 3)+ ~ }  

e itsq Wl( t  s -P) 

(:{, ~) 

(3,7) 

with 

P : ( k ) }  p-} (U 3 _ul)2 t ;  1 } 
q : p - ~ ( u l  u2)du 1 + p ' ~ ( u 3 - u  ]) 

h( u 2) 

All these solutions are singular in the points 

I g~ + (ua_uX) ag~ 
- - -  0 

Ou 1 

Hence all the derived solutions are valid apart from these singularities, 
which we call caustic points and therefore the assumption that the gradients 
of ~ are moderate is violated and therefore the term with the highest 
power of k is not the leading one any more. It is possible to construct 
an asymptotic solution near the caustic with the help of our method. In 
this article we consider only points at finite distance from these caustics. 

We are now able to give the complete solution in the shadow region at 
finite distance from the caustics. We must sum up all ray contributions 
in a point. This is a geometrical problem which is not solved here. 

4. The il~cideut tcace is spher ica l .  

Remembering that the geometry which we consider depends on the incident 
wave it is obvious though the object is the same as the one of section 3 
the coordinate system which we introduce here is a different one. However 
we use the same notation. 

\\:e now take as a solution of (2, 9) the form: 

! v(t) 
W] (t -p)} (it 
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w h e r e  Po, qo a r e  the p, q c o o r d i n a t e s  of the s o u r c e .  The shadow b o u n d a r y  
on the objec t  is ca l l ed  u 1 = h(u2).  And as  we m e n t i o n e d  in s e c t i o n  3 the 
r a d i u s  of c u r v a t u r e  of the wave  f r o n t s  of the i n c o m i n g  waves  on the shadow 
b o u n d a r y  is 

A g~ 
01 - x (4, I) ~g~ 

8u ] 

And in this case Pl is the distance from a point on the shadow boundary 
{h(u 2), u 2} to the source. We take the origin of u 3 in the source, hence 
S, = 0. Along the diffracted ray the arciength is u s - u ~. We can derive 
the function u I = h(u 2) eliminating u from 

g�89 
U I _ 

8u I 

As a solution in the shadow region, near the shadow boundary, we have 

2 3 3 1 
A k r2 exp iku3-i~(pT+po~)~ J 

+ (ua-u I) 

X e it(~-~lo) Wl(t_Po)  v( t -p)  ~ W~ (t-p) t (4, 2) 
w 1 ( t )  

This  so lu t ion  s h o u l d b e  equal  to ~inc on the shadow b o u n d a r y  at  f in i te  d i s t a n c e  
f r o m  the ob jec t .  Hence  we expand (4, 2) fo r  l a r g e  v a l u e s  of Po and p and 
find 

�9 3+7ri, { }<k< 2 ~ exp(iku 
~o d : 2Avr~k r2 P~ h(u2),u 

U 3 

exp(iku 3 ) 

U s 

f r o m  which fo l lows  
- I - 1 ~  i 

2 ~e 1 
~{ 2 } r~ :-- A : p-~ h(u ) u 2 

Considering the case that the source is at finite distance from the object 
apd the observation point near the object, we expand the solution for large 
values of Po. Because the observation point may be at finite distance from 
the shadow boundary we use the variables of (3,7) and get the solution 

.2 3, 
exp(iku J { v(t) } 

"-- -13P2) ~c emt v ( t - p ) -  \:V] ( t-p)  dt (-!, 
) ]{  ,,\ l(t) -u l 

Lau~ au J 
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p = F~  ( u a - u  

q = p -g(u  1 u 2 ) d u  1 + p -X(u 3 -u  
h(u 2) 

This solution can be expressed as a sum of residues in the region where 
this sum is rapidly convergent, we get 

W l ( t s  -p) -lri  exp  {iku3 - i2p}} ~ eitsq }2 ( 4 , 4 )  

b e a r i n g  in  m i n d  t h a t  W l ( t s )  = 0 
A s o l u t i o n  a t  f i n i t e  d i s t a n c e  f r o m  the  o b j e c t  w i l l  be  g a i n e d  b y  e x p a n d i n g  
W l ( t  s -p)  f o r  l a r g e  v a l u e s  of p. 

1 
p~(ul, u2)exp iku 3- 

1 / 

au I \~u I / 

i (4,5) 

{ s; } 2 
E exp i t s  "/ p ' ~ ( u l ,  u 2 ) d u  1 
s =0 ( u 2) 

• 

A g a i n  t he  f i n a l  s o l u t i o n  i s  a s u p e r p o s i t i o n  of  a l l  r a y  c o n t r i b u t i o n s  in  the  
p o i n t  of o b s e r v a t i o n .  
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